Frequently Asked Machine Learning Interview Questions from Linear Regression

What is Covariance coefficient?

Covariance tells you whether two random variables vary with respect to each other or not. And if they vary together then whether they vary in same direction or in opposite direction with respect to each other. So if both random variables vary in same direction then we say it is positive covariance, however if they vary in opposite direction then it is negative covariance.

Continue reading


What is The Main Difference between RNN and CNN | NLP

The main difference between RNN and CNN come from their structure of the Neural Network. Due to their specific design, CNNs are more fit for spatial data such as images whereas RNNs are more for temporal data that comes in sequence.

CNNs employ filters within convolutional layers to transform data. Whereas, RNNs reuse activation functions from other data points in the sequence to generate the next output in a series.

What is the main difference between RNN and LSTM | NLP | RNN vs LSTM

The main difference between RNN and LSTM is in terms of which one maintain information in the memory for the long period of time. Here LSTM has advantage over RNN as LSTM can handle the information in memory for the long period of time as compare to RNN. But the question is what is different in LSTM than RNN by which LSTMs are capable of maintaining long term temporal dependencies (remembering information for long period of time).

What is the Significance of ROC AUC Curve?

ROC AUC curve helps you to determine the threshold of binary classification problems in machine learning. In Machine Learning classification problems are based on the probability value and its not always correct to have the threshold as 0.5. It depends on the type and domain of the problem. For example in a legal case you don’t want the false positive to be high or it should be at least as possible. so the threshold in this case would be very high. the term AUC that is Area under curve tells us the model goodness of fit. It is used to do the comparative analysis between different classifiers and identify which one is performing good.

1 2 3 12