What is The Main Difference between RNN and CNN | NLP | RNN vs CNN

The main difference between RNN and CNN come from their structure of the Neural Network. Due to their specific design, CNNs are more fit for spatial data such as images whereas RNNs are more for temporal data that comes in sequence.

CNNs employ filters within convolutional layers to transform data. Whereas, RNNs reuse activation functions from other data points in the sequence to generate the next output in a series.

CNN takes fixed size inputs and generates fixed size outputs. RNN can handle arbitrary input/output lengths.

CNN is a feed forward neural network that is generally used for Image recognition and object classification. While RNN works on the principle of saving the output of a layer and feeding this back to the input in order to predict the output of the layer.

CNN considers only the current input while RNN considers the current input and also the previously received inputs. It can memorize previous inputs due to its internal memory.

Convolutional Neural Network

Recurrent Neural Network

Recommended Read: RNN vs LSTM




One comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.