Category Archives: Machine Learning

Data Science and Machine Learning Articles | Yearly round-up 2019

Guys, I have consolidated all my ML and DS articles. In case you have missed it, here are the links in one place.


Read more

What is Boosting in Ensemble Learning

In the last post, we have discussed the Bagging technique and learnt how Bagging helps us in reducing the model variance. In this post, we will learn one more technique of Ensemble learning which is Boosting. So let me ask you a question. Suppose you have tried all the possible models and none of them performing as expected. So now what you will do? I will go with Boosting. Got the point?

Read more

What is Bagging in Ensemble Learning

In general, any of the machine learning problems we try to find the best possible optimal model for a given problem. That means finding the best possible model within the given model family, for example, finding the best possible decision tree or finding the best possible KNN model. And if we have more time then we can try all model families available, and come up with the best possible regression model, best possible KNN model, best possible SVM model etc. And among these again select the best possible model, which will be either KNN, SVM or any other.

Read more

How to start career in Data Science and Machine Learning

It does not matter how much experience you have, actually anybody can start or switch to data science and machine learning. The only important this is, how much eager you are for it. What it means to you. If you are very much keen to work in this field then nobody can stop you. There might be some short term hurdles however if you are focused enough and know your goals regarding where you want to see yourself after certain years, then you will definitely be successful in overcoming those hurdles.

Read more

Bayes’ Theorem with Example for Data Science Professionals

Bayes Theorem is the extension of Conditional probability. Conditional probability helps us to determine the probability of A given B, denoted by P(A|B). So Bayes’ theorem says if we know P(A|B) then we can determine P(B|A), given that P(A) and P(B) are known to us.

Read more

Conditional Probability with examples For Data Science

As the name suggests, Conditional Probability is the probability of an event under some given condition. And based on the condition our sample space reduces to the conditional element.

For example, find the probability of a person subscribing for the insurance given that he has taken the house loan. Here sample space is restricted to the persons who have taken house loan.

Read more

Probability Basics for Data Science

Probability in itself is a huge topic to study. Applications of probability are found everywhere whether it is medical science, share market trading, sports, gaming Industry and many more. However in this post my focus is on to explain the topics which are needed to understand data science and machine learning concepts.

Read more

Variance, Standard Deviation and Other Measures of Variability and Spread

Variance and Standard Deviation are the most commonly used measures of variability and spread. Variability and spread are nothing but the process to know how much data is being varying from the mean point. And Variance tells us the average distance of all data points from the mean point. Standard deviation is just the square root of the variance. As variance is calculated in squared unit (explained below in the post) and hence to come up a value having unit equal to the data points, we take square root of the variance and it is called as Standard Deviation.

Read more

A Complete Guide to K-Nearest Neighbors Algorithm – KNN using Python

k-Nearest Neighbors or kNN algorithm is very easy and powerful Machine Learning algorithm. It can be used for both classification as well as regression that is predicting a continuous value. The very basic idea behind kNN is that it starts with finding out the k-nearest data points known as neighbors of the new data point for which we need to make the prediction. And then if it is regression then take the conditional mean of the neighbors y-value and that is the predicted value for new data point. If it is classification then it takes the mode (majority value) of the neighbors y value and that becomes the predicted class of the new data point.

Read more

Step by Step Approach to Principal Component Analysis using Python

Principal Component Analysis or PCA is used for dimensionality reduction of the large data set. In my previous post A Complete Guide to Principal Component Analysis – PCA in Machine Learning , I have explained what is PCA and the complete concept behind the PCA technique. This post is in continuation of previous post, However if you have the basic understanding of how PCA works then you may continue else it is highly recommended to go through above mentioned post first.

Read more

A Complete Guide to Principal Component Analysis – PCA in Machine Learning

Principal Component Analysis or PCA is a widely used technique for dimensionality reduction of the large data set. Reducing the number of components or features costs some accuracy and on the other hand, it makes the large data set simpler, easy to explore and visualize. Also, it reduces the computational complexity of the model which makes machine learning algorithms run faster. It is always a question and debatable how much accuracy it is sacrificing to get less complex and reduced dimensions data set. we don’t have a fixed answer for this however we try to keep most of the variance while choosing the final set of components.

Read more

What is Logistic Regression?

Logistic regression is the most widely used machine learning algorithm for classification problems. In its original form it is used for binary classification problem which has only two classes to predict. However with little extension and some human brain, logistic regression can easily be used for multi class classification problem. In this post I will be explaining about binary classification. I will also explain about the reason behind maximizing log likelihood function.

Read more

What is Multicollinearity?

Multicollinearity occurs in a multi linear model where we have more than one predictor variables. So Multicollinearity exist when we can linearly predict one predictor variable (note not the target variable) from other predictor variables with significant degree of accuracy. It means two or more predictor variables are highly correlated. But not the vice versa means if there is low correlation among predictors then also multicollinearity may exist.

Read more

What is stepAIC in R?

In R, stepAIC is one of the most commonly used search method for feature selection. We try to keep on minimizing the stepAIC value to come up with the final set of features. “stepAIC” does not necessarily means to improve the model performance, however it is used to simplify the model without impacting much on the performance. So AIC quantifies the amount of information loss due to this simplification. AIC stands for Akaike Information Criteria.

Read more

Feature Selection Techniques in Regression Model

Feature selection is a way to reduce the number of features and hence reduce the computational complexity of the model. Many times feature selection becomes very useful to overcome with overfitting problem. It helps us in determining the smallest set of features that are needed to predict the response variable with high accuracy. if we ask the model, does adding new features, necessarily increase the model performance significantly? if not then why to add those new features which are only going to increase model complexity.

Read more

Important Use Cases of NLP

In today’s world we are generating large amount of data every second. while tweeting, chating, writing or even speaking, we are fabricating corpse of data. Most of the data is in textual and unstructured form. Hence to make this data understandable by computer, we need to process it. NLP technique helps us in processing the data and helps us to get useful insights from it.

Read mor

What is the Coefficient of Determination | R Square

The coefficient of Determination is the direct indicator of how good our model is in terms of performance whether it is accuracy, Precision or Recall. In more technical terms we can define it as The Coefficient of Determination is the measure of the variance in response variable ‘y’ that can be predicted using predictor variable ‘x’. It is the most common way to measure the strength of the model.

Read more

What is Linear Regression? Part:1

Linear Regression is a field of study which emphasizes on the statistical relationship between two continuous variables known as Predictor and Response variables. (Note: when there are more than one predictor variables then it becomes multiple linear regression.)

  • Predictor variable is most often denoted as x and also known as Independent variable.
  • Response variable is most often denoted as y and also known as Dependent variable.
Read more

Covariance and Correlation

Covariance and Correlation are very helpful in understanding the relationship between two continuous variables. Covariance tells whether both variables vary in same direction (positive covariance) or in opposite direction (negative covariance). There is no significance of covariance numerical value only sign is useful. Whereas Correlation explains about the change in one variable leads how much proportion change in second variable. Correlation varies between -1 to +1. If correlation value is 0 then it means there is no Linear Relationship between variables however other functional relationship may exist.

Read more

What is Linear Regression? Part:2

In any business there are some easy to measure variables like : Age, Gender, Income, Education Level etc. and there are some difficult to measure variables like amount of loan to give, no of days a patient will stay in the hospital, price of the house after 10 years etc. So Regression is the technique which enables you to determine difficult to measure variables with the help of easy to measure variables.

Read more