What is Bagging in Ensemble Learning

Ensemble Learning says, if we can build multiple models then why to select the best one why not top 2, again why not top 3 and why not top 10. Then if you find top 10 deploy all 10 models. And when new data comes, make a prediction from all 10 models and combine the predictions and finally make a joint prediction. This is the key idea of ensemble learning.

How to start career in Data Science and Machine Learning

It does not matter how much experience you have, actually anybody can start or switch to data science and machine learning. The only important this is, how much eager you are for it. What it means to you. If you are very much keen to work in this field then nobody can stop you. There might be some short term hurdles however if you are focused enough and know your goals regarding where you want to see yourself after certain years, then you will definitely be successful in overcoming those hurdles.

A Complete Guide to Principal Component Analysis – PCA in Machine Learning

Principal Component Analysis or PCA is a widely used technique for dimensionality reduction of the large data set. Reducing the number of components or features costs some accuracy and on the other hand, it makes the large data set simpler, easy to explore and visualize. Also, it reduces the computational complexity of the model which makes machine learning algorithms run faster. It is always a question and debatable how much accuracy it is sacrificing to get less complex and reduced dimensions data set. we don’t have a fixed answer for this however we try to keep most of the variance while choosing the final set of components.