Word2Vec and Semantic Similarity using spacy | NLP spacy Series | Part 7

Word vectors – also called word embeddings – are mathematical descriptions of individual words such that words that appear frequently together in the language will have similar values. In this way we can mathematically derive context. As mentioned above, the word vector for “lion” will be closer in value to “cat” than to “dandelion”.

Continue reading

Data Visualization using plotly, matplotlib, seaborn and squarify | Data Science

Data Visualization is one of the important activity we perform when doing Exploratory Data Analysis. It helps in preparing business reports, visual dashboards, story telling etc important tasks. In this post I have explained how to ask questions from the data and in return get the self explanatory graphs. In this You will learn the use of various python libraries like plotly, matplotlib, seaborn, squarify etc to plot those graphs.

How to Perform Sentence Segmentation or Sentence Tokenization using spaCy | NLP Series | Part 5

Sentence Segmentation or Sentence Tokenization is the process of identifying different sentences among group of words. Spacy library designed for Natural Language Processing, perform the sentence segmentation with much higher accuracy. Spacy provides different models for different languages. In this post we’ll learn how sentence segmentation works, and how to set user defined segmentation rules.

1 2 3 4