Word2Vec and Semantic Similarity using spacy | NLP spacy Series | Part 7

Word vectors – also called word embeddings – are mathematical descriptions of individual words such that words that appear frequently together in the language will have similar values. In this way we can mathematically derive context. As mentioned above, the word vector for “lion” will be closer in value to “cat” than to “dandelion”.

Continue reading

Numerical Feature Extraction from Text | NLP series | Part 6

Machine Learning algorithms don’t understand the textual data rather it understand only numerical data. So the problem is how to convert the textual data to the numerical features and further pass these numerical features to the machine learning algorithms.

As we all know that the raw text stored in some dump repository contains a lot of meaningful information. And in today’s fast changing world, it becomes essential to consider data driven decision than fully rely on experience driven decision.

How to Perform Sentence Segmentation or Sentence Tokenization using spaCy | NLP Series | Part 5

Sentence Segmentation or Sentence Tokenization is the process of identifying different sentences among group of words. Spacy library designed for Natural Language Processing, perform the sentence segmentation with much higher accuracy. Spacy provides different models for different languages. In this post we’ll learn how sentence segmentation works, and how to set user defined segmentation rules.

Parts of Speech Tagging and Dependency Parsing using spaCy | NLP | Part 3

Parts of Speech tagging is the next step of the tokenization. Once we have done tokenization, spaCy can parse and tag a given Doc. spaCy is pre-trained using statistical modelling. This model consists of binary data and is trained on enough examples to make predictions that generalize across the language. Example, a word following “the” in English is most likely a noun.

A Quick Guide to Tokenization, Lemmatization, Stop Words, and Phrase Matching using spaCy | NLP | Part 2

spaCy is designed specifically for production use. It helps you build applications that process and “understand” large volumes of text. It can be used to build information extraction or natural language understanding systems, or to pre-process text for deep learning. In this article you will learn about Tokenization, Lemmatization, Stop Words and Phrase Matching operations using spaCy.

Spacy Installation and Basic Operations | NLP Text Processing Library | Part 1

spaCy is an open-source Python library that parses and “understands” large volumes of text.
spaCy is the best way to prepare text for deep learning.
It interoperates seamlessly with TensorFlow, PyTorch, scikit-learn, Gensim and the rest of Python’s awesome AI ecosystem.
With spaCy, you can easily construct linguistically sophisticated statistical models for a variety of NLP problems.